2ちゃんねる スマホ用 ■掲示板に戻る■ 全部 1- 最新50    

中性子ゲート量子コンピュータは開発されつつある

1 :不明なデバイスさん:2015/03/20(金) 22:48:11.68 ID:Oil2RwEF.net
中性子ゲート量子コンピュータは開発されつつある?

2 :不明なデバイスさん:2015/03/20(金) 23:05:49.89 ID:Oil2RwEF.net
MLC 2ビットマルチレベルセル波形例
4電位で2ビット重ねあわせを行う
http://i.imgur.com/SoSRmxc.jpg

3 :不明なデバイスさん:2015/03/20(金) 23:09:26.76 ID:Oil2RwEF.net
電位で重ねあわせる方法が技術的に先行・・・MLC 8ビットマルチレベルセルならどうだろうか?

4 :不明なデバイスさん:2015/03/21(土) 01:09:54.36 ID:S0zWyuob.net
中性子がどうやってゲートになるのか説明してみろ科学音痴

5 :不明なデバイスさん:2015/03/21(土) 14:05:28.09 ID:tuWFNJTY.net
これからのテーマだろ?

6 :不明なデバイスさん:2015/03/22(日) 00:22:26.09 ID:yFjJ2pQ7.net
量子コンピュータの世界
http://aurorawave.atspace.tv/?sop:v/20141229VtyvMhVf&55000&1834 http://video.fc2.com/content/20141229VtyvMhVf http://vip.video55000-thumbnail.fc2.com/up/pic/201412/29/V/f/20141229VtyvMhVf.jpg

7 :不明なデバイスさん:2015/03/22(日) 00:35:17.91 ID:yFjJ2pQ7.net
8 :ご冗談でしょう?名無しさん:2015/03/20(金) 20:41:51.27 ID:???
量子暗号というものは光子一個があまりにも小さいが故に測定だけでエネルギーを失う。
結果として盗聴の有無を確認できるというだけで、暗号技術とは到底呼べない。
光子一個のエネルギーが小さいのだから通信は外部から容易に妨害されるだろう。

量子テレポーテーションという考えかたもインチキ。
テレポーテーションして見えるのは統計的な錯覚を見ているだけ。

量子コンピュータなどもインチキ。光速に計算できるが結果の信頼性は概算でしかない。
間違った解が含まれる計算機など到底コンピュータとは呼べない。
コンピュータは厳密性が要求されるので確率的な誤差を含む高速計算機などは
計算エラーが決定論的に排除できない誤動作スパコンと同じであって機械として存在するいみがない。

9 :ご冗談でしょう?名無しさん:2015/03/20(金) 21:21:28.33 ID:???
>>8
そそ・・・かなり納得できる

8 :不明なデバイスさん:2015/03/22(日) 00:38:20.43 ID:yFjJ2pQ7.net
重力波はエンタングルメント状態にあり光速より速い
http://wc2014.2ch.net/test/read.cgi/sci/1426828870/l50

9 :不明なデバイスさん:2015/03/22(日) 00:41:47.95 ID:yFjJ2pQ7.net
量子アニーリングを使う量子コンピュータ・・・量子アナログコンピュータだろう?

D-Wave社の量子コンピュータは「本物」〜米研究者グループが「量子効果を確認」
http://internet.watch.impress.co.jp/docs/news/20130701_605845.html

Large-scale quantum chip validated
http://news.usc.edu/52818/large-scale-quantum-chip-validated/
http://news.usc.edu/files/2013/06/Lidar_Daniel.jpg

Quantum Computing
http://aurorawave.atspace.tv/?sop:v/Fls523cBD7E&RDFls523cBD7E https://i1.ytimg.com/vi/Fls523cBD7E/mqdefault.jpg #AuroraWaveTV

量子アニーリング法とD-Wave マシン
http://www.stat.phys.titech.ac.jp/~nishimori/papers/QA-DWave_CE.pdf
演算回路が超伝導素子で構成されているので、演算自体はほとんど電力を消費しない。
筆者がNASAでD-Wave Twoを見せてもらったときには、演算回路の消費電力が
17fW(フェムトワット、1.7×10-14W)と表示されていた。

10 :不明なデバイスさん:2015/03/22(日) 00:45:20.63 ID:yFjJ2pQ7.net
膜理論 (Superstring theory 超ひも理論の世界)
http://aurorawave.atspace.tv/?sop:v/7y_BlA3ZTeQ&RD7y_BlA3ZTeQ http://www.youtube.com/watch?&v=7y_BlA3ZTeQ&list=RD7y_BlA3ZTeQ&hd=1 http://i1.ytimg.com/vi/7y_BlA3ZTeQ/mqdefault.jpg #AuroraWaveTV

11 :不明なデバイスさん:2015/03/22(日) 01:00:28.72 ID:yFjJ2pQ7.net
量子コンピュータの量子ビット重ねあわせ技術は通信で発揮されるだろう・・・
量子コンピュータの量子ビット重ねあわせ技術は通信で発揮されるだろう・・・
量子コンピュータの量子ビット重ねあわせ技術は通信で発揮されるだろう・・・ 👀

12 :不明なデバイスさん:2015/03/22(日) 01:06:34.78 ID:yFjJ2pQ7.net
日立、量子コンピュータに匹敵する性能の室温動作の新型コンピュータを試作
http://news.mynavi.jp/news/2015/02/23/121/
日立製作所は2月23日、約1兆の500乗通りのパターン(組み合わ
せ)から適した解を導く「組み合わせ最適化問題」を量子コンピュータ
なみの性能で実現可能な新型コンピュータを試作したと発表した。
http://news.mynavi.jp/news/2015/02/23/121/images/011l.jpg
http://news.mynavi.jp/news/2015/02/23/121/images/012l.jpg

日立、量子コンピュータに匹敵する性能の室温動作の新型コンピュータを試作
http://news.mynavi.jp/news/2015/02/23/121/
これらの技術は65nmプロセスを用いて開発され、研究では、
2万480パラメータを入力可能なコンピュータの試作機を開発し、実証実験を実施。
その結果、システムが室温で動作することが確認されたほか、
現在の量子アニーリングを用いた量子コンピュータのパラメータ数512の
40倍となる2万480パラメータの大規模な組み合わせ最適化問題を数ミリ秒で解けること、
ならびに従来のコンピュータを用いて解く場合と比較して電力効率約1800倍を実現できることを実証したという。
なお同社では、現在実用化されている最先端半導体プロセスとなる14nmプロセスを用いた場合であれば
1600万パラメータに対応するチップに大規模化することも可能だと説明している 👀

13 :不明なデバイスさん:2015/03/22(日) 01:11:17.30 ID:yFjJ2pQ7.net
写真で見る世界最速のスーパーコンピュータートップ10
http://gigazine.net/news/20130618-fastest-supercomputers/

◆1位:Tianhe-2(天河二号)、中国人民解放軍国防科学技術大学
http://i.gzn.jp/img/2013/06/18/fastest-supercomputers/01_m.jpg
IntelのIvy Bridge(12コア・2.2GHz)とXeon Phi(57コア・1.1GHz)を採用し、
コア数は312万、計算速度は33.9ペタフロップス、消費電力は17.8MW

◆2位:Titan、アメリカのオークリッジ国立研究所
http://i.gzn.jp/img/2013/06/18/fastest-supercomputers/02_titan2_m.jpg
AMD Opteron 6274(16コア・2.2GHz)とNvidia Kepler(14コア・0.732GHz)を採用し、
コア数は56万640、計算速度は17.6ペタフロップス、消費電力は8.3MW

◆3位:Sequoia、アメリカのローレンス・リバモア国立研究所
http://i.gzn.jp/img/2013/06/18/fastest-supercomputers/03_8716842181_3f50ae207a_o_m.jpg
IBM BlueGene/Qを採用し、中のプロセッサーはPower BQC(16コア・1.60GHz)、
コア数は157万2864、計算速度は17.2ペタフロップス、消費電力は7.9MW

◆4位:スーパーコンピュータ京、独立行政法人理化学研究所 計算科学研究機構(AICS)
http://i.gzn.jp/img/2013/06/18/fastest-supercomputers/04_01_m.jpg
富士通 SPARC64 VIIIfx(8コア・2.0GHz)を採用し、コア数は70万5204、
計算速度は10.5ペタフロップス、消費電力は12.7MW

◆5位:Mira、アメリカのアルゴンヌ国立研究所のエネルギー部門
http://i.gzn.jp/img/2013/06/18/fastest-supercomputers/05_30292D004-72dpi_m.jpg
BM BlueGene/Qを採用し、中のプロセッサーはPower BQC(16コア・1.60GHz)、
コア数は78万6432、計算速度は8.6ペタフロップス、消費電力は3.95MW

14 :不明なデバイスさん:2015/03/22(日) 01:17:44.79 ID:yFjJ2pQ7.net
2Uきょう体で「京」1ラック分、富士通がスパコン次世代機の詳細を公表
http://itpro.nikkeibp.co.jp/article/NEWS/20140624/566300/
http://itpro.nikkeibp.co.jp/article/NEWS/20140624/566300/1.jpg
http://itpro.nikkeibp.co.jp/article/NEWS/20140624/566300/4.jpg
http://itpro.nikkeibp.co.jp/article/NEWS/20140624/566300/5.jpg

15 :不明なデバイスさん:2015/03/22(日) 05:19:11.51 ID:yFjJ2pQ7.net
電子における電位とは・・・エネルギー的に量子状態ではないか?

16 :不明なデバイスさん:2015/03/22(日) 05:27:56.22 ID:yFjJ2pQ7.net
量子の世界
http://refind2ch.org/search?q=%E9%87%8F%E5%AD%90

17 :不明なデバイスさん:2015/03/22(日) 23:43:34.47 ID:JOBkAJ8Z.net
中性子=男の娘

18 :不明なデバイスさん:2015/03/25(水) 14:37:56.73 ID:kgjyDPNu.net
日立、量子コンピュータに匹敵する性能の室温動作の新型コンピュータを試作
http://news.mynavi.jp/news/2015/02/23/121/
日立製作所は2月23日、約1兆の500乗通りのパターン(組み合わ
せ)から適した解を導く「組み合わせ最適化問題」を量子コンピュータ
なみの性能で実現可能な新型コンピュータを試作したと発表した。
http://news.mynavi.jp/news/2015/02/23/121/images/011l.jpg
http://news.mynavi.jp/news/2015/02/23/121/images/012l.jpg

日立、量子コンピュータに匹敵する性能の室温動作の新型コンピュータを試作
http://news.mynavi.jp/news/2015/02/23/121/
これらの技術は65nmプロセスを用いて開発され、研究では、
2万480パラメータを入力可能なコンピュータの試作機を開発し、実証実験を実施。
その結果、システムが室温で動作することが確認されたほか、
現在の量子アニーリングを用いた量子コンピュータのパラメータ数512の
40倍となる2万480パラメータの大規模な組み合わせ最適化問題を数ミリ秒で解けること、
ならびに従来のコンピュータを用いて解く場合と比較して電力効率約1800倍を実現できることを実証したという。
なお同社では、現在実用化されている最先端半導体プロセスとなる14nmプロセスを用いた場合であれば
1600万パラメータに対応するチップに大規模化することも可能だと説明している 👀

19 :不明なデバイスさん:2015/03/26(木) 06:59:45.09 ID:FQc6LtgT.net
量子コンピュータに匹敵する性能の室温動作の新型コンピュータを試作
http://aurorawave.atspace.tv/?sop:v/Dj6ZRaCm2KQ&RDDj6ZRaCm2KQ http://www.youtube.com/watch?&v=Dj6ZRaCm2KQ&list=RDDj6ZRaCm2KQ&hd=1 http://i1.ytimg.com/vi/Dj6ZRaCm2KQ/mqdefault.jpg #AuroraWaveTV

20 :不明なデバイスさん:2015/03/26(木) 14:37:11.63 ID:FQc6LtgT.net
量子の制御とコンピュータ
http://aurorawave.atspace.tv/?sop:v/zm5MSWobTJE&RDzm5MSWobTJE http://www.youtube.com/watch?&v=zm5MSWobTJE&list=RDzm5MSWobTJE&hd=1 http://i1.ytimg.com/vi/zm5MSWobTJE/mqdefault.jpg #AuroraWaveTV

21 :不明なデバイスさん:2015/03/26(木) 14:45:17.01 ID:FQc6LtgT.net
シリコン量子コンピュータ ―究極の半導体素子を目指して―
http://www.st.keio.ac.jp/learning/0512.html
研究対象に選んだのが、シリコン原子一個ずつを使った情報処理です。
天然のシリコンはSi-28,Si-29,Si-30という3種類の安定同位体によって構成され、
なかでもSi-29だけが原子核スピンをもつ「磁石」です。
http://www.st.keio.ac.jp/learning/img/p_0512_1a.jpg
http://www.st.keio.ac.jp/learning/img/p_0512_2a.jpg
http://www.st.keio.ac.jp/learning/img/p_0512_3a.jpg
http://www.st.keio.ac.jp/learning/img/p_0512_4a.jpg

22 :不明なデバイスさん:2015/03/26(木) 14:46:35.64 ID:FQc6LtgT.net
伊藤研究室究 - 極のシリコンコンピュータを目指して
http://aurorawave.atspace.tv/?sop:v/769YVHrCc3E&PL0F85A4574DEF4263 http://www.youtube.com/watch?&v=769YVHrCc3E&list=PL0F85A4574DEF4263&hd=1 http://i1.ytimg.com/vi/769YVHrCc3E/mqdefault.jpg #AuroraWaveTV

23 :不明なデバイスさん:2015/03/26(木) 14:48:13.21 ID:FQc6LtgT.net
MLC 2ビットマルチレベルセル波形例
4電位で2ビット重ねあわせを行う
http://i.imgur.com/SoSRmxc.jpg
電位で重ねあわせる方法が技術的に先行
MLC 8ビットマルチレベルセルならどうだろうか?

24 :不明なデバイスさん:2015/03/26(木) 15:23:22.76 ID:FQc6LtgT.net
?自意識は11次元目に存在する?

25 :不明なデバイスさん:2015/03/26(木) 15:33:39.19 ID:FQc6LtgT.net
SVGでMLC 8ビットマルチレベルセルをシミュレートせよ 
http://www.atmarkit.co.jp/ait/articles/1206/01/news143.html

26 :不明なデバイスさん:2015/03/27(金) 03:53:28.59 ID:Jb1J1/2Q.net
>>24
膜理論 (Superstring theory 超ひも理論の世界)
http://aurorawave.atspace.tv/?sop:v/7y_BlA3ZTeQ&RD7y_BlA3ZTeQ http://www.youtube.com/watch?&v=7y_BlA3ZTeQ&list=RD7y_BlA3ZTeQ&hd=1 http://i1.ytimg.com/vi/7y_BlA3ZTeQ/mqdefault.jpg

27 :不明なデバイスさん:2015/03/27(金) 03:56:41.87 ID:Jb1J1/2Q.net
>>4
愛のままにわがままに 僕は君だけを傷つけない/B'z #うたスキ
http://joysound.com/ex/utasuki/movie/video/_mid_2008370654_index.htm http://pd.joysound.com/thumb_l/2008370654-2.jpg

28 :不明なデバイスさん:2015/03/27(金) 04:08:48.33 ID:Jb1J1/2Q.net
シリコン半導体の次はカーボン半導体・・・カーボンナノチューブやダイヤモンドであるらしい

Template:未発見元素を含む元素周期表
http://ja.wikipedia.org/wiki/Template:%E6%9C%AA%E7%99%BA%E8%A6%8B%E5%85%83%E7%B4%A0%E3%82%92%E5%90%AB%E3%82%80%E5%85%83%E7%B4%A0%E5%91%A8%E6%9C%9F%E8%A1%A8

29 :不明なデバイスさん:2015/03/29(日) 00:22:39.40 ID:q0hbC7ml.net
http://vip.video55000-thumbnail.fc2.com/up/pic/201412/29/V/f/20141229VtyvMhVf.jpg

30 :不明なデバイスさん:2015/03/29(日) 17:41:57.69 ID:q0hbC7ml.net
シリコンとカーボンの関係
http://i.imgur.com/4CFmPhn.gif

31 :不明なデバイスさん:2015/03/30(月) 01:01:28.70 ID:Lc4HjxIr.net
こんなにすごい慶應の科学技術
http://aurorawave.atspace.tv/?sop:v/wsAgdJro5K4&RDwsAgdJro5K4 http://www.youtube.com/watch?&v=wsAgdJro5K4&list=RDwsAgdJro5K4&hd=1 http://i1.ytimg.com/vi/wsAgdJro5K4/mqdefault.jpg #AuroraWaveTV

32 :不明なデバイスさん:2015/04/01(水) 00:36:14.37 ID:KHhCyVbW.net
量子コンピューターの現在の課題はどんな技術なの?

33 :不明なデバイスさん:2015/04/01(水) 13:39:13.68 ID:ZwhWDY4P.net
【量子力学/量子情報】量子テレポーテーションの心臓部をチップ化――量子コンピュータ実用化へ「画期的成果」(c)2ch.net
http://anago.2ch.net/test/read.cgi/scienceplus/1427737358/

34 :不明なデバイスさん:2015/04/04(土) 21:39:03.61 ID:CafepkM7.net
量子テレポーテーションのイメージ 出典:東京大学
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU999.jpg

★超々重要疑問★ 測定結果の情報について

測定結果の情報が無いとVヴィクタを再現出来無いとすると
測定結果の情報は光速でしか伝達出来無いなら
BのVヴィクタは光速よりも速く得られる事が無い矛盾

測定結果の情報が光であった場合
干渉によりBのVヴィクタが形成されそうなので
光速よりも速くBのVヴィクタが得られ無いなら
テレポーテーションは証明出来無いのではないか?

測定結果の情報を必要とせずにBのVヴィクタが得られてこそ
本物のテレポーテーションは証明され完成されるであろう

35 :不明なデバイスさん:2015/04/04(土) 21:40:34.53 ID:CafepkM7.net
MLC 2ビットマルチレベルセル波形例
4電位で2ビット重ねあわせを行う
http://i.imgur.com/SoSRmxc.jpg

SVGでMLC 8ビットマルチレベルセルをシミュレートせよ 
http://www.atmarkit.co.jp/ait/articles/1206/01/news143.html

36 :不明なデバイスさん:2015/04/04(土) 22:15:28.97 ID:CafepkM7.net
量子理論で無くても出来る多ビット重ねあわせについて
私がジャパンシュタイン ・・・ 出来る事から始めよ

http://i.imgur.com/SoSRmxc.jpg
MLC 2ビットマルチレベルセルメモリ波形例
4電位で2ビット重ねあわせを行う
電位で重ねあわせる方法が技術的に先行
MLC 8ビットマルチレベルセルならどうだろうか?

http://homepage1.nifty.com/albedo-kobayashi/winter-4-stars.jpg
多色光によるプリズム分光マルチビット受信
光とプリズムで重ねあわせた光は色分解できる
明暗を生じた色はビットと同様に扱われ
マルチビット重ねあわせが証明できる
このビット重ねあわせ技術は通信で発揮
http://www.astronomy.orino.net/site/kataru/solar_system/sun/pict/prism.jpg

37 :不明なデバイスさん:2015/04/04(土) 22:22:11.80 ID:CafepkM7.net
ダイヤモンドプリズムなんて作られそうだ

38 :不明なデバイスさん:2015/04/04(土) 22:30:13.33 ID:CafepkM7.net
ダイヤモンドプリズム
http://image1.shopserve.jp/www.j-tano.com/pic-labo/34514-01-640.jpg

シリコンとカーボンの関係
http://i.imgur.com/4CFmPhn.gif

39 :不明なデバイスさん:2015/04/05(日) 00:06:20.42 ID:H/XwXoHx.net
スーパーブラディオン
http://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%BC%E3%83%91%E3%83%BC%E3%83%96%E3%83%A9%E3%83%87%E3%82%A3%E3%82%AA%E3%83%B3
スーパーブラディオン (superbradyon) は、光速よりも数段速く運動することができる仮説上の素粒子である。
タキオンと違って、スーパーブラディオンは正の実数の質量とエネルギーを持つ。

40 :不明なデバイスさん:2015/04/07(火) 13:22:32.77 ID:KCn8MvNB.net
>指数個の状態が重ねあわされた状態なんて、指数分の1の微細なゆらぎで崩壊
>するから、ビット数増えると破綻するんだけどなwww

指数個を制御する方法は理論上の限界のようですな
自由に飛び回れる電子、実は素粒子らしいな

41 :不明なデバイスさん:2015/04/07(火) 13:24:41.43 ID:KCn8MvNB.net
中性子ゲート量子コンピュータは開発されつつある
http://peace.2ch.net/test/read.cgi/hard/1426859291/l50

42 :不明なデバイスさん:2015/04/07(火) 13:25:19.25 ID:KCn8MvNB.net
電子は素粒子なので電子を扱うのが現実的

43 :不明なデバイスさん:2015/04/07(火) 13:28:12.15 ID:KCn8MvNB.net
シリコン量子コンピュータ ―究極の半導体素子を目指して―
http://www.st.keio.ac.jp/learning/0512.html
研究対象に選んだのが、シリコン原子一個ずつを使った情報処理です。
天然のシリコンはSi-28,Si-29,Si-30という3種類の安定同位体によって構成され、
なかでもSi-29だけが原子核スピンをもつ「磁石」です。
http://www.st.keio.ac.jp/learning/img/p_0512_1a.jpg
http://www.st.keio.ac.jp/learning/img/p_0512_2a.jpg
http://www.st.keio.ac.jp/learning/img/p_0512_3a.jpg
http://www.st.keio.ac.jp/learning/img/p_0512_4a.jpg

伊藤研究室究 - 極のシリコンコンピュータを目指して
http://aurorawave.atspace.tv/?sop:v/769YVHrCc3E&PL0F85A4574DEF4263 http://www.youtube.com/watch?&v=769YVHrCc3E&list=PL0F85A4574DEF4263&hd=1 http://i1.ytimg.com/vi/769YVHrCc3E/mqdefault.jpg #AuroraWaveTV

44 :不明なデバイスさん:2015/04/07(火) 13:33:17.00 ID:KCn8MvNB.net
量子テレポーテーションのイメージ 出典:東京大学
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU999.jpg

★超々重要疑問★ 測定結果の情報について

測定結果の情報が無いとVヴィクタを再現出来無いとすると
測定結果の情報は光速でしか伝達出来無いなら
BのVヴィクタは光速よりも速く得られる事が無い矛盾

測定結果の情報が光であった場合
干渉によりBのVヴィクタが形成されそうなので
光速よりも速くBのVヴィクタが得られ無いなら
テレポーテーションは証明出来無いのではないか?

測定結果の情報を必要とせずにBのVヴィクタが得られてこそ
本物のテレポーテーションは証明され完成されるであろう

測定結果の情報を不要とするために
何らかの同期が取れるなら良さそうだが・・・その発表がまだ無い

45 :不明なデバイスさん:2015/04/07(火) 14:15:08.61 ID:KCn8MvNB.net
電子・・・1個が分離されるので位置確定ができる
光子・・・光は電磁波として重ねあわせができる

46 :不明なデバイスさん:2015/04/07(火) 14:50:37.23 ID:KCn8MvNB.net
http://blogs.c.yimg.jp/res/blog-8c-fe/naohiro064/folder/432809/07/10250807/img_0

47 :不明なデバイスさん:2015/04/07(火) 14:51:39.64 ID:KCn8MvNB.net
http://img-cdn.jg.jugem.jp/9b5/2390946/20140808_278450.jpg

48 :不明なデバイスさん:2015/04/08(水) 02:25:04.01 ID:ELqTmdtL.net
そもそも 量子テレポーテーションは
11次元目を捉えたものでなければならない
M理論とか膜理論と言う分野と思われる

49 :不明なデバイスさん:2015/04/08(水) 02:29:43.27 ID:ELqTmdtL.net
アナログ量子コンピュータ?

量子アニーリングを使う量子コンピュータ・・・量子アナログコンピュータだろう?

D-Wave社の量子コンピュータは「本物」〜米研究者グループが「量子効果を確認」
http://internet.watch.impress.co.jp/docs/news/20130701_605845.html

Large-scale quantum chip validated
http://news.usc.edu/52818/large-scale-quantum-chip-validated/
http://news.usc.edu/files/2013/06/Lidar_Daniel.jpg

Quantum Computing
http://aurorawave.atspace.tv/?sop:v/Fls523cBD7E&RDFls523cBD7E https://i1.ytimg.com/vi/Fls523cBD7E/mqdefault.jpg #AuroraWaveTV

量子アニーリング法とD-Wave マシン
http://www.stat.phys.titech.ac.jp/~nishimori/papers/QA-DWave_CE.pdf
演算回路が超伝導素子で構成されているので、演算自体はほとんど電力を消費しない。
筆者がNASAでD-Wave Twoを見せてもらったときには、演算回路の消費電力が
17fW(フェムトワット、1.7×10-14W)と表示されていた。

50 :不明なデバイスさん:2015/04/08(水) 02:36:53.17 ID:ELqTmdtL.net
量子コンピュータの世界
http://aurorawave.atspace.tv/?sop:v/20141229VtyvMhVf&55000&1834
http://vip.video55000-thumbnail.fc2.com/up/pic/201412/29/V/f/20141229VtyvMhVf.jpg

51 :不明なデバイスさん:2015/04/08(水) 21:01:35.24 ID:lLRtdkJm.net
>>1
で、人間の脳ができるわけだ。

52 :不明なデバイスさん:2015/04/09(木) 01:41:28.29 ID:6gEnl4Vk.net
>>51
炭素系生物である人間の脳は無理

53 :不明なデバイスさん:2015/04/09(木) 01:55:13.65 ID:6gEnl4Vk.net
人間を機械的にシミュレートするのが人工知能さ!
http://chatmark.boo.jp/cgi/chat/robo/robo.cgi

54 :不明なデバイスさん:2015/04/09(木) 02:16:51.37 ID:6gEnl4Vk.net
中性子が多い原子核に現れる特異構造を解明
http://www.titech.ac.jp/news/2014/027409.html
http://www.titech.ac.jp/news/img/n000239_1.jpg
http://www.titech.ac.jp/news/img/n000239_2.jpg

55 :不明なデバイスさん:2015/04/09(木) 17:38:14.12 ID:6gEnl4Vk.net
8 :ご冗談でしょう?名無しさん:2015/03/20(金) 20:41:51.27 ID:???
量子暗号というものは光子一個があまりにも小さいが故に測定だけでエネルギーを失う。
結果として盗聴の有無を確認できるというだけで、暗号技術とは到底呼べない。
光子一個のエネルギーが小さいのだから通信は外部から容易に妨害されるだろう。

量子テレポーテーションという考えかたもインチキ。
テレポーテーションして見えるのは統計的な錯覚を見ているだけ。

量子コンピュータなどもインチキ。光速に計算できるが結果の信頼性は概算でしかない。
間違った解が含まれる計算機など到底コンピュータとは呼べない。
コンピュータは厳密性が要求されるので確率的な誤差を含む高速計算機などは
計算エラーが決定論的に排除できない誤動作スパコンと同じであって機械として存在するいみがない。

9 :ご冗談でしょう?名無しさん:2015/03/20(金) 21:21:28.33 ID:???
>>8
そそ・・・かなり納得できる

56 :不明なデバイスさん:2015/04/09(木) 17:58:53.40 ID:6gEnl4Vk.net
SFの世界到来 オランダのチームが100%の精度で量子テレポーテーションに成功!!
http://irorio.jp/sakiyama/20140601/139456/ https://vimeo.com/34776612
http://imgassets.com/irorio/uploads/2014/06/12-researchteam2-700x350.jpg
http://imgassets.com/irorio/uploads/2014/06/entanglement1-710x359.jpg
http://imgassets.com/irorio/uploads/2015/04/2015-04-07_14h40_11.jpg

57 :不明なデバイスさん:2015/04/09(木) 17:59:50.78 ID:6gEnl4Vk.net
量子コンピュータの世界
http://aurorawave.atspace.tv/?sop:v/20141229VtyvMhVf&55000&1834 http://vip.video55000-thumbnail.fc2.com/up/pic/201412/29/V/f/20141229VtyvMhVf.jpg

58 :不明なデバイスさん:2015/04/09(木) 18:11:40.17 ID:6gEnl4Vk.net
「時間の逆流」は無い

同じ時刻A地点の2人がどんな速度で移動B地点迂回してもC地点では同じ時間だけ経過している

A地点 → B地点 → C地点

59 :不明なデバイスさん:2015/04/12(日) 04:40:11.25 ID:ENoZ4sI9.net
2015/02/23
日立製作所は2月23日、膨大な組み合わせから適した解を導く
「組み合わせ最適化問題」を瞬時に解くコンピュータを
開発したと発表した

量子コンピュータに匹敵する性能で「1兆の500乗」という
組み合わせにも対応できる上、従来の半導体チップで実現して
いるため室温で動作可能で、電力効率も大幅に優れるという

組み合わせ最適化問題は、複数都市をまわる場合の最短経路を求める
「巡回セールスマン問題」で知られ、世界的な輸送システムや
送電網など、大規模な社会システムの課題解決にも重要
だが問題が大きくなればなるほど組み合わせのパターンも増え
最適な解を導くためにはスーパーコンピュータを使っても天文学的な
計算時間が必要になってしまう

65ナノメートルプロセスによる試作機で実証実験を行い
現在の量子コンピュータのパラメータ数である512の40倍となる
2万480パラメータの組み合わせ最適化問題を数ミリ秒で解けることを確認
電力効率は量子コンピュータの約1800倍という
14ナノメートルプロセスを採用すれば、
1600万パラメータに対応する大規模化も可能だとしている

60 :不明なデバイスさん:2015/04/12(日) 04:40:57.14 ID:ENoZ4sI9.net
2015/02/12(木)
量子力学の世界では、観測される前の時点での粒子の状態は
単に未知であるのではなく、そもそも決定されておらず
観測者の観測行為自体が粒子の状態を決定すると考える
これは、有名な「シュレーディンガーの猫」の思考実験の基に
なっている考え方である

ワシントン大学のカーター・マーチ教授は
粒子の未来の状態を知ることによって、
その粒子の過去の状態が変化することに気付いた
つまり、未来の事象を知ることによって過去を変えることが
できるということであり、これがもしも古典力学の世界にも
あてはまるとしたら、私たちが現在取っている行動は
未来の私たちの意思決定によって影響を受けていることになる

こうした考えは今のところすべて仮説ではあるが
物理学者たちは、量子力学の世界でこのような時間の逆転が
実際に起こるかどうかを確かめるための装置の作製を行なった
マーチ教授はこの技術を使って
2つの粒子の異なる時点での量子状態を観測した

61 :不明なデバイスさん:2015/04/12(日) 04:42:39.14 ID:ENoZ4sI9.net
量子状態の検出はマイクロ波の箱に収めた回路によって行なう
マイクロ波長の光子を数個、箱に送り込むと
それらの光子の量子場が回路と相互作用する
箱の中に光子が存在しているとき
光子は量子系についての情報を持っている
光子同士を量子重ね合わせ状態にして、強い観測を行い
観測結果は隠したまま、続けて弱い観測を行なう

時間が正方向だけに流れているとして計算すると
隠されていた量子状態を正しく当てる確率は50%になる
しかし時間が逆方向にも流れているとして、正方向、逆方向の
時間での計算を等価に扱えるとすると量子状態を当てる確率は90%に上がる

研究チームが量子の初期状態についての観測結果をチェックしたところ
正解確率はちょうど90%になっていた
この結果は、量子力学の世界では時間が
正方向にも逆方向にも流れていることを示唆している

■マーチ教授のコメント
「多くの粒子から成り立っているこの現実世界で
なぜ時間が正方向にしか流れずエントロピーが常に増大する
のかはよく分かっていません
しかし、たくさんの人がこの問題に取り組んでおり
あと数年で解決できると期待しています」

62 :不明なデバイスさん:2015/04/12(日) 04:44:51.10 ID:ENoZ4sI9.net
横浜国立大学は2月4日、光子の発光と吸収だけで量子通信や
量子計算に用いられる量子テレポーテーションを可能にする
新原理を実証したと発表した

同成果は、同大大学院 工学研究院の小坂英男教授
新倉菜恵子研究員らによるもの
詳細は、米国物理学会誌「Physical Review Letters」の
オンライン版に掲載される予定

今回、特殊な光源や検出器に頼ることなく
量子メモリ素子となるダイヤモンド中の単一欠陥の電子に
内在する量子もつれを利用し、発光と吸収という自然現象だけで
光子と電子の量子もつれを検出した
具体的には、量子もつれ生成は発光した光子と残った電子が
自然にもつれるように、また、量子もつれ検出は光子と
電子がもつれて吸収されるように工夫を行った

このような自然現象の利用で、特別な量子操作の必要もなく
量子テレポーテーションによる量子中継が行えることを
実験によって明らかにしたという

63 :不明なデバイスさん:2015/04/12(日) 04:45:52.56 ID:ENoZ4sI9.net
2014.12.29 MON
量子力学の原理を情報処理に応用するコンピューター
「量子コンピューター」

スーパーコンピューターが数千年もかかって解く問題を
数秒で計算できるようになると期待されている
NHKスペシャル「NEXT WORLD 私たちの未来」取材班が訪ねたのは
未来学者レイ・カーツワイル、カナダのコンピューター企業
「D-Wave Systems」だった

アメリカの未来学者レイ・カーツワイルは
30年以内に人間の知能を超えるコンピューターが生まれると予言する

「わたしがもっているスマートフォンは
学生のときに使用していたコンピューターより
値段は10億分の1、性能は10億倍以上の力があります
われわれは今後25年間も再び同じ進化をたどります
コンピューターの値段は、いまの10万分の1になり、
大きさも血液細胞と同じくらいになるでしょう
われわれはますます世界中から多くの情報をかき集め
予測能力を高めていくことになるのです」

64 :不明なデバイスさん:2015/04/12(日) 04:47:28.40 ID:ENoZ4sI9.net
掲載日:2014/12/25

情報通信研究機構(NICT)は12月19日、電気通信大学と共同で
光ファイバ通信波長帯における量子もつれ光子対の
生成効率を向上させる技術を開発したと発表した

詳細は、英国科学誌「Scientific Reports」に掲載された

量子もつれ光子対は、絶対に破られない暗号や超高速計算など
従来の情報通信技術では不可能だった機能を実現する上で
不可欠な光源である
NICTでは、通信波長帯において独自の高純度量子もつれ光源を開発してきた
量子もつれ光源を駆動させるためには、波長やパルス幅などの
パラメータを自在に調整でき、なおかつ高速で安定動作
できるレーザが必要となる
今回、2.5GHzの駆動用レーザをこの高純度量子もつれ光源に
組み合わせることで、雑音を増やすことなく、量子もつれ光の
生成速度を30倍以上高速化することに成功したという

65 :不明なデバイスさん:2015/04/12(日) 04:47:59.52 ID:ENoZ4sI9.net
■トランスプランテーション

メタトロンコンピュータにおける“ダウンロード”

メタトロンコンピュータにはファイルという概念がなく
プログラムとデータの区別もない
それぞれのプロセスを受け持つ「領域」は存在するが
隣接する領域との境界は明確でなく、通常のコンピュータのように
ファイルのかたちでコピーやペーストを行なうことができない
(演算結果をファイルに書き出すことはできる)

特定のプロセス領域を別のマシンに移すには
移殖=トランスプランテーションという手段を使う
移殖元の素粒子構造パターンの指定領域を、移殖先の構造パターン
の中に再構成するのだが、この再構成に必要なキーコードは
移殖元を分解しなくては手に入れることができない
移殖先での再構成には、移殖元の破壊が必要なのである
よって、ファイルの“コピー”というよりは“移動”に近い

再構成された領域が移殖先に定着し、もともとあった他の領域と
連携して動作するようになれば、トランスプランテーションは完了となる
この処理には、メタトロンコンピュータ同士の回路の末端を接触
させる必要があり、相性次第では拒絶反応も起こり得る

66 :不明なデバイスさん:2015/04/13(月) 06:45:10.23 ID:37r2pp+d.net
これの解説w
http://hr-inoue.net/zscience/topics/quantum/qt06.gif 水晶に電圧を掛けると振動するのは有名ですが、上記も同じで
光が物体に衝突した時点で「ラマン散乱」を起こし、大元と異なる光を散乱している

これも同様に
http://www.nikkei-science.com/wp-content/uploads/2013/09/201311_016.jpg チタンの特性ような物質を探すことから始めようw

67 :不明なデバイスさん:2015/04/13(月) 06:50:04.28 ID:37r2pp+d.net
?測定結果を伝えるのはインチキのタネである?

68 :不明なデバイスさん:2015/04/13(月) 21:42:49.35 ID:37r2pp+d.net
これは量子力学におけるスピン位置を時間の逆流と間違う原因ではないか?
http://www.youtube.com/watch?v=-8BUXwKu7x0&list=RD-8BUXwKu7x0

これは量子力学におけるスピン位置について雲と言われる原理ではないか?
http://www.youtube.com/watch?v=fJvmySjwT4s&list=RDfJvmySjwT4s

これは量子力学におけるスピン位置を同期測定するための原理ではないか?
https://www.youtube.com/watch?v=CB4MD2AVPMA&list=RDCB4MD2AVPMA

69 :不明なデバイスさん:2015/04/13(月) 22:12:12.13 ID:37r2pp+d.net
[WLP] 失敗に学ぶ-泡が機械を破壊 「気泡やキャビテーションによる破壊」
http://aurorawave.atspace.tv/?sop:v/ZXVK_V-gutE&RDZXVK_V-gutE http://i1.ytimg.com/vi/ZXVK_V-gutE/mqdefault.jpg #AuroraWaveTV

70 :不明なデバイスさん:2015/04/13(月) 22:17:32.62 ID:37r2pp+d.net
Dimensions 1 Japanese
http://aurorawave.atspace.tv/?sop:v/WsteGeVM2q8&PLw2BeOjATqruMgeaqUEfJv4c4WfZJSZHg http://i1.ytimg.com/vi/WsteGeVM2q8/mqdefault.jpg #AuroraWaveTV

71 :不明なデバイスさん:2015/04/13(月) 22:18:39.33 ID:37r2pp+d.net
Chaos1 Japanese
http://aurorawave.atspace.tv/?sop:v/zUe1L8T8mms&PLw2BeOjATqrtRYkBdoYT_TWin3k7oyLNy http://i1.ytimg.com/vi/zUe1L8T8mms/mqdefault.jpg #AuroraWaveTV

72 :不明なデバイスさん:2015/04/14(火) 23:11:09.21 ID:QXnN4uiX.net
量子力学のような不確定性ではコンピュータにできない?
http://www.youtube.com/watch?v=Q8savTZOzY0&list=RDQ8savTZOzY0

73 :不明なデバイスさん:2015/04/14(火) 23:12:04.95 ID:QXnN4uiX.net
コンピュータでは確定できる正確性が求められる

74 :不明なデバイスさん:2015/04/15(水) 10:51:57.60 ID:4Edyp+bg.net
量子力学では微小誤差を確率で説明したに過ぎず不正確で使用不能な演算しかできない?
https://www.youtube.com/watch?v=479SrqufkDk&list=RDQ8savTZOzY0

75 :不明なデバイスさん:2015/04/15(水) 10:57:55.69 ID:4Edyp+bg.net
微小誤差・・・素粒子レベルの回転振動などに等価する・・・M理論
https://www.youtube.com/watch?v=7y_BlA3ZTeQ&index=5&list=RDQ8savTZOzY0

76 :不明なデバイスさん:2015/04/19(日) 01:43:47.91 ID:5R1ZPILp.net
超伝導とは、低温で電子がクーパー対と呼ばれる対を形成することで
金属の電気抵抗がゼロになる現象で、工業的な応用の観点からも重要視され
これまで盛んに研究されてきた
この電子同士がクーパー対を形成するためには
電子同士を引きつける力が必要である
この引きつける力の起源として、これまで格子振動が考えられてきた
しかし、近年の研究から、銅酸化物高温超伝導体などではスピンと呼ばれる
電子が持つ非常に小さな磁石の揺らぎが、電子同士を引きつける力として
重要な役割を果たすことが分かっている

77 :不明なデバイスさん:2015/04/19(日) 01:44:19.33 ID:5R1ZPILp.net
「ベンタブラック」と名付けられたこの物質は光の99.96%を吸収する
黒い塗料や布地などに見られる通常の黒色は吸収率が95〜98%
開発元のサリー・ナノシステムズ社によれば
英国立物理学研究所や米国立標準技術研究所で
試験されたなかで最も黒い物質だという

ベンタブラックは直径2〜3ナノメートル(ナノは10億分の1)の
多数のカーボンナノチューブ(筒状炭素分子)からできており
アルミホイル上で生成される
ホイルだけのときは目に付く表面のしわも
ベンタブラックに覆われるとまるで消えてしまったかのように識別できなくなる

78 :不明なデバイスさん:2015/04/19(日) 01:47:26.13 ID:5R1ZPILp.net
2015/02/10(火)
時間の「秒」を定義しているセシウム原子時計よりも
精度が100倍以上高い「光格子時計」を
2台作って作動させたところ、2台のずれが160億年で
1秒という超高精度になったと、
香取秀俊東京大教授(量子エレクトロニクス)らのチームが発表した
138億年前に宇宙が誕生してから現在まで計り続けたとしても
ずれが1秒より小さいことになる

これまでの光格子時計の世界最高記録を約30倍上回る
成果は、9日付の科学誌ネイチャーフォトニクス電子版に発表した

2台を光ケーブルでつないで約1カ月間動かして計算したところ、
2台が1秒ずれるのに160億年かかるという結果になった

79 :不明なデバイスさん:2015/04/19(日) 01:48:25.64 ID:5R1ZPILp.net
■日立、世界最高精度の電子顕微鏡 新材料開発に活用
【日本経済新聞】 2015/2/18

日立製作所は世界で最高精度の電子顕微鏡を開発した
分解能は0.043ナノ(ナノは10億分の1)メートルで、
結晶中に並ぶ原子を1個ずつ見分けられる
これまでの最高記録は東京大学と日本電子が共同開発した
機器の0.045ナノメートルだった
新しい磁性材料や超電導材料の開発に活用する

開発したのは透過型電子顕微鏡(TEM)と呼ばれる電子線で
試料の内部を調べる機器
電子を120万ボルトの高電圧で光速の95%まで加速して観察する
金属の場合、厚さが従来の約4倍の約400ナノメートルまで観察できる
実験では発光ダイオード(LED)用材料の窒化ガリウムを調べ
窒素やガリウム原子を明瞭に区別できた

80 :不明なデバイスさん:2015/04/19(日) 01:49:20.31 ID:5R1ZPILp.net
ベイズの定理(ベイズのていり、英: Bayes' theorem)とは
条件付き確率に関して成り立つ定理で、トーマス・ベイズによって示された
なおベイズ統計学においては基礎として利用され
いくつかの未観測要素を含む推論等に応用される

81 :不明なデバイスさん:2015/04/19(日) 01:51:14.87 ID:5R1ZPILp.net
掲載日:2015年3月23日

新エネルギー・産業技術総合開発機構(NEDO)と光電子融合
基盤技術研究所(PETRA)は3月23日、シリコンフォトニクス技術を用いた
世界最小クラスとなる5mm角の小型光トランシーバ(光I/Oコア)を開発し
1Gbpsあたり5mWの消費電力
および1チャンネルあたり25Gbpsの伝送速度を実現し
かつマルチモードファイバを用いて伝送距離300mの高速データ伝送を
実証したと発表した

同成果はNEDOが推進する
「超低消費電力型光エレクトロニクス実装システム技術開発」プロジェクトの
成果の1つで、3月22日から米国ロサンゼルスで開催されている
「OFC 2015(光ファイバ通信国際会議)」にて
3月26日(米国西海岸時間)に発表される予定だという

82 :不明なデバイスさん:2015/04/19(日) 01:52:26.79 ID:5R1ZPILp.net
掲載日:2015年2月6日gigazine.net

半導体材料として一般的なシリコンに取って代わる
次世代半導体材料の研究が世界中で進められており、
ダイヤモンド、グラフェン、カーボンナノチューブなどの
炭素系材料が有力視されています
しかし、シリコンに代わるものはシリコンとばかりに
シリコン原子が原子1個分の極薄状態に2次元構造をとる新素材
「Silicene」も対抗馬として名乗りを上げています

原子数個分の厚みしか持たない超極薄材料「二次元機能性材料」は
優れた物理特性を持つものが多く、炭素原子で構成される
グラフェンやリン原子で構成される黒リンナノシートなどが開発され
最先端のナノテクノロジーの1つとして注目されています

中でも2010年に発見されたシリコン原子が原子1個の厚みで結合した
「Silicene」は、次世代半導体材料としてグラフェンに負けず
劣らず期待されています
Siliceneはグラフェンと似た六角形のハニカム構造をとりながら
結合するものの、結合する「腕」同士が屈曲した立体構造をとる点で
平面構造のグラフェンとは異なっており、スピンホール効果
超伝導性、巨大な磁気抵抗などの優れた特性を持つと考えられています
しかし、Siliceneはグラフェンと異なり
空気にさらされると不安定になることから
極めて扱いにくい素材としても知られており、
予想される優れた特性を検証したり応用したりする実験が
なかなか進展していませんでした

83 :不明なデバイスさん:2015/04/19(日) 01:53:02.85 ID:5R1ZPILp.net
http://i.gzn.jp/img/2015/02/06/silicene/a01.jpg

そんな中、テキサス大学コックレル校のデジ・エイキンワンド教授の
研究チームが、Siliceneを用いたトランジスタの作成に成功した
という研究成果を科学誌Nature Nanotechnologyに発表しました
エイキンワンド博士は、生成したSiliceneを
銀薄膜と数ナノメートルという極薄のアルミナ薄膜で
サンドイッチ状に挟み込むことで保護した後、
シリコンウエハーの上に銀保護膜面を上にして接合し
最後に銀薄膜をゆっくりとはがすことで、Silicene-アルミナ接合体、
すなわちSiliceneトランジスタの作成に成功したとのこと

84 :不明なデバイスさん:2015/04/19(日) 18:06:12.44 ID:s9zT4TYPE
open2chExtenderは板トップにopen2chと2chscのスレッド一覧を追加
検索ボックスや open2ch 2chsc 2chnet 相互移動ボタンなども追加する
両サイドに open2ch 2chsc または open2ch 2chnet の板一覧も追加する
open2chExtenderはTampermonkeyなどのスクリプトインストーラが必要
日付がバージョンなので更新していれば必ず再インストールしてください
https://openuserjs.org/scripts/open2chExtender/open2chExtender
https://i.imgur.com/2YGL8ff.jpg

85 :不明なデバイスさん:2015/04/19(日) 18:44:57.32 ID:s9zT4TYPE
線形光学素子・・・光子数を保存する光学素子。例えば、
ビームスプリッター、半波長板、1/4波長板、位相シフタ、
偏光板、偏光ビームスプリッターなど。
http://www.ntt.co.jp/news2015/1504/150415a.html

86 :不明なデバイスさん:2015/04/19(日) 22:32:28.35 ID:actYgf4w.net
低温でくぱぁする電子シリコンとな・・・

87 :不明なデバイスさん:2015/04/20(月) 15:46:38.21 ID:7/gLeXZu.net
原発のロボってさ半導体ダメになっちゃうから
今の段階じゃ真空管しかうつてないのけ

88 :不明なデバイスさん:2015/04/22(水) 00:37:18.10 ID:+KTb6yU2.net
■ウェネバ(Whenever)

時間絶対座標を感知する能力
枝分かれする未来の可能性に
干渉や誘導を行う予知能力の一種であり
デクストラの能力と重合させることにより
モノディメンションストリング(Mono Dimension String)という
あらゆるものを切断する1次元の糸を作り出すことができる

89 :不明なデバイスさん:2015/04/22(水) 18:16:40.46 ID:LHhn6E6qF
まずABC三個の原子時計を同期させる
1つはA地球に、1つはB月に、もう1つは地球→月面反射→C地球で同期する
地球から月へレーザー照射しABC三個の原子時計の誤差を計る
(C-A)=2*(B-A) となり 地球と月の距離だけ遅延する

量子テレポーテーション実験
重ねあわせ量子テレポテーションを使って
量子変化をC原子時計で観測する
(C-A)⇒0 量子テレポテーションなら時間が0になる

90 :不明なデバイスさん:2015/04/22(水) 18:20:44.19 ID:LHhn6E6qF
↑ ただし測定結果の情報は伝送しない
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU999.jpg

91 :不明なデバイスさん:2015/04/22(水) 18:22:44.27 ID:LHhn6E6qF
新しい大型ロケットの概要
http://www.yomiuri.co.jp/photo/20150409/20150409-OYT1I50018-L.jpg
<参照>
JAXA、国産ロケットのコスト半減 20年打ち上げ  :日本経済新聞
http://www.nikkei.com/article/DGXLASDG09H8U_Z00C15A4CR8000/

宇宙開発利用部会(第20回)の開催について:文部科学省
http://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu2/059/kaisai/1354217.htm

92 :不明なデバイスさん:2015/04/22(水) 19:34:54.59 ID:LHhn6E6qF
量子テレポーテーションのイメージ 出典:東京大学
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU999.jpg ★超々重要疑問★ 測定結果の情報について

測定結果の情報が無いとVヴィクタを再現出来無いとすると
測定結果の情報は光速でしか伝達出来無いなら
BのVヴィクタは光速よりも速く得られる事が無い矛盾

測定結果の情報が光であった場合
干渉によりBのVヴィクタが形成されそうなので
光速よりも速くBのVヴィクタが得られ無いなら
テレポーテーションは証明出来無いのではないか?

測定結果の情報を必要とせずにBのVヴィクタが得られてこそ
本物のテレポーテーションは証明され完成されるであろう

93 :不明なデバイスさん:2015/04/22(水) 19:35:41.37 ID:LHhn6E6qF
まずABC三個の原子時計を同期させる
1つはA地球に、1つはB月に、もう1つは地球→月面反射→C地球で同期する
地球から月へレーザー照射しABC三個の原子時計の誤差を計る
(C-A)=2*(B-A) となり 地球と月の距離だけ遅延する

量子テレポーテーション実験
重ねあわせ量子テレポテーションを使って
量子変化をC原子時計で観測する
(C-A)⇒0 量子テレポテーションなら時間が0になる

94 :不明なデバイスさん:2015/04/22(水) 19:36:35.83 ID:LHhn6E6qF
↑ ただし測定結果の情報は伝送しない
http://image.itmedia.co.jp/ee/articles/1503/31/l_tt150331ToukyoU999.jpg

95 :不明なデバイスさん:2015/04/22(水) 19:40:12.14 ID:LHhn6E6qF
SFの世界到来 オランダのチームが100%の精度で量子テレポーテーションに成功!!
http://irorio.jp/sakiyama/20140601/139456/ https://vimeo.com/34776612
http://imgassets.com/irorio/uploads/2014/06/12-researchteam2-700x350.jpg http://imgassets.com/irorio/uploads/2014/06/entanglement1-710x359.jpg http://imgassets.com/irorio/uploads/2015/04/2015-04-07_14h40_11.jpg

96 :不明なデバイスさん:2015/04/22(水) 20:02:10.70 ID:LHhn6E6qF
量子理論で無くても出来る多ビット重ねあわせについて
私がジャパンシュタイン ・・・ 出来る事から始めよ

http://i.imgur.com/SoSRmxc.jpg MLC 2ビットマルチレベルセルメモリ波形例
4電位で2ビット重ねあわせを行う
電位で重ねあわせる方法が技術的に先行
MLC 8ビットマルチレベルセルならどうだろうか?

http://homepage1.nifty.com/albedo-kobayashi/winter-4-stars.jpg 多色光によるプリズム分光マルチビット受信
光とプリズムで重ねあわせた光は色分解できる
明暗を生じた色はビットと同様に扱われ
マルチビット重ねあわせが証明できる
このビット重ねあわせ技術は通信で発揮
http://www.astronomy.orino.net/site/kataru/solar_system/sun/pict/prism.jpg

http://image1.shopserve.jp/www.j-tano.com/pic-labo/34514-01-640.jpg
シリコンとカーボンの関係
http://i.imgur.com/4CFmPhn.gif

97 :不明なデバイスさん:2015/04/22(水) 20:03:44.91 ID:LHhn6E6qF
シリコン量子コンピュータ ―究極の半導体素子を目指して―
http://www.st.keio.ac.jp/learning/0512.html
研究対象に選んだのが、シリコン原子一個ずつを使った情報処理です。
天然のシリコンはSi-28,Si-29,Si-30という3種類の安定同位体によって構成され、
なかでもSi-29だけが原子核スピンをもつ「磁石」です。
http://www.st.keio.ac.jp/learning/img/p_0512_1a.jpg http://www.st.keio.ac.jp/learning/img/p_0512_2a.jpg http://www.st.keio.ac.jp/learning/img/p_0512_3a.jpg http://www.st.keio.ac.jp/learning/img/p_0512_4a.jpg
22 :不明なデバイスさん:2015/03/26(木) 14:46:35.64 ID:FQc6LtgT.net
伊藤研究室究 - 極のシリコンコンピュータを目指して
http://aurorawave.atspace.tv/?sop:v/769YVHrCc3E&PL0F85A4574DEF4263 http://i1.ytimg.com/vi/769YVHrCc3E/mqdefault.jpg #AuroraWaveTV

98 :不明なデバイスさん:2015/04/22(水) 21:57:35.20 ID:LHhn6E6qF
http://aurorawave.atspace.tv/?sop:v/0jHsq36_NTU&RD0jHsq36_NTU http://i.ytimg.com/vi/0jHsq36_NTU/mqdefault.jpg #AuroraWaveTV

99 :不明なデバイスさん:2015/04/22(水) 22:12:30.96 ID:LHhn6E6qF
このように仮定してみた

電圧とは電子の回転速度
電流とは電子の移動個数
http://hooktail.sub.jp/elemag/ev/

100 :不明なデバイスさん:2015/04/26(日) 02:48:40.62 ID:i4cHk2mD.net
1971年に10μmプロセスで製造されたIntel 4004と
2015年に14nmプロセスで製造されたIntel Core i5プロセッサ(Broadwell)を比較すると
トランジスタの性能は3500倍、電力効率は90,000倍、コストは60,000分の1と
「高性能」「高い電力効率」「低コスト」を実現した

101 :不明なデバイスさん:2015/04/27(月) 02:48:02.31 ID:UqEF7OCb.net
ベネパ

102 :不明なデバイスさん:2015/04/27(月) 02:49:11.66 ID:UqEF7OCb.net
シリコン量子コンピュータ ―究極の半導体素子を目指して―
http://www.st.keio.ac.jp/learning/0512.html
研究対象に選んだのが、シリコン原子一個ずつを使った情報処理です。
天然のシリコンはSi-28,Si-29,Si-30という3種類の安定同位体によって構成され、
なかでもSi-29だけが原子核スピンをもつ「磁石」です。
http://www.st.keio.ac.jp/learning/img/p_0512_1a.jpg http://www.st.keio.ac.jp/learning/img/p_0512_2a.jpg http://www.st.keio.ac.jp/learning/img/p_0512_3a.jpg http://www.st.keio.ac.jp/learning/img/p_0512_4a.jpg
伊藤研究室究 - 極のシリコンコンピュータを目指して
http://aurorawave.atspace.tv/?sop:v/769YVHrCc3E&PL0F85A4574DEF4263 http://i1.ytimg.com/vi/769YVHrCc3E/mqdefault.jpg #AuroraWaveTV

103 :不明なデバイスさん:2015/04/27(月) 12:14:28.44 ID:UqEF7OCb.net
>>58
>「時間の逆流」は無い

実時間は物理現象では無いから常に論理的経過する
光速であっても眼で見るには常に過去しか見えない
宇宙の星空は空間光記録映像の再生は過去にあたる
では未来を見るには予測シミュレーションしかない
事象が回転するものなら予測シミュレーションは容易

104 :不明なデバイスさん:2015/04/27(月) 13:45:47.27 ID:Bprj2OZ/.net
>>13
やっぱもう日本の技術って大したことないんだな
中国の方がずっと上か

105 :不明なデバイスさん:2015/04/27(月) 18:59:56.25 ID:UqEF7OCb.net
>>104
京マシンスケールでは100京を超える処理能力に・・・2Uきょう体で「京」1ラック分、富士通がスパコン次世代機の詳細を公表
http://itpro.nikkeibp.co.jp/article/NEWS/20140624/566300/
http://itpro.nikkeibp.co.jp/article/NEWS/20140624/566300/1.jpg http://itpro.nikkeibp.co.jp/article/NEWS/20140624/566300/4.jpg http://itpro.nikkeibp.co.jp/article/NEWS/20140624/566300/5.jpg

106 :不明なデバイスさん:2015/04/27(月) 19:21:49.86 ID:UqEF7OCb.net
富士通の新スパコン「FX100」
http://news.mynavi.jp/articles/2014/12/05/sc14_fx100/002.html
http://news.mynavi.jp/articles/2014/12/05/sc14_fx100/images/002l.jpg
http://news.mynavi.jp/articles/2014/12/05/sc14_fx100/images/007l.jpg
http://news.mynavi.jp/articles/2014/12/05/sc14_fx100/images/017l.jpg
http://news.mynavi.jp/articles/2014/12/05/sc14_fx100/images/016l.jpg
http://news.mynavi.jp/articles/2014/12/05/sc14_fx100/images/022l.jpg

107 :不明なデバイスさん:2015/04/27(月) 21:09:01.87 ID:jVgsDE/n.net
中村教授らが設立、横浜に紫色LED照明の会社
http://www.yomiuri.co.jp/science/20150423-OYT1T50159.html

108 :不明なデバイスさん:2015/04/27(月) 23:40:51.47 ID:jVgsDE/n.net
2014/07/01(火)
■幅原子1個分の配線開発 

NTT物性科学基礎研究所などは
半導体基板の表面に幅が原子1個分の
配線を作ることに成功した

原子を置き石のように並べると原子を覆うように
溝ができ、電子が流れるようになった
基板を削る従来技術に比べ配線幅が
10分の1以下になり
大規模集積回路(LSI)の集積度が1000倍以上に
なる可能性がある

109 :不明なデバイスさん:2015/04/28(火) 14:14:03.97 ID:kU6/AWRZ.net
重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された
( クエーサーの木星による掩蔽の観測を、重力レンズ効果の数値と比較:NASA) 
http://ja.wikipedia.org/wiki/%E5%85%89%E9%80%9F#cite_note-2

重力や光電磁波にも速度があるらしいので、重力や光電磁波は流体でなければならない
(流れや流出のような言葉を使っているのは、ベクトル場を速度場や運動する流体のようなものと考える)
http://ja.wikipedia.org/wiki/%E7%99%BA%E6%95%A3_%28%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E8%A7%A3%E6%9E%90%29

110 :不明なデバイスさん:2015/04/29(水) 08:32:08.53 ID:+w3u/QPd.net
真空チャネルトランジスタは真空管の原理を利用して、エミッタ・コレクタの間隔を150ナノメートルにした真空ギャップを作ることで物理的な接触なしにゲート間に電子が流れるように改良されており
MOSFETを代替するものです。従来の真空管ではミリメートルスケールだった電極間のギャップをナノメートルスケールに変更することで、電子が真空ギャップ内に存在する気体分子と衝突する
頻度を大きく減少させられるため減圧処置が不要になるとのこと。
NASAが開発中の真空チャネルトランジスタは、すでに460GHzという超高速動作に成功しており、この技術を活用した超高速CPUの実現が期待されています。
現在主流となっているシリコンベースの半導体では微細化技術に限界が見え始めており、今後もムーアの法則を維持していくには
大きなブレークスルーが必要とされるところ、真空チャネルトランジスタにはその可能性が秘められていると言えそうです。
また、数百GHzという超高速での発振が可能な真空チャネルトランジスタはテラヘルツ帯(300GHzから3THz)の無線通信へ応用できると考えられています。
テラヘルツ帯は、波長300マイクロメートル(周波数にして1THz)前後の周波数帯で、波源となる装置を製造するのが難しいため
ほとんど利用が進んでいませんが数十Gbpsの超高速無線通信に利用できると考えられています。
http://gigazine.net/news/20140626-nasa-vacuum-transistor/
http://i.gzn.jp/img/2014/06/26/nasa-vacuum-transistor/002_m.jpg http://i.gzn.jp/img/2014/06/26/nasa-vacuum-transistor/003_m.jpg http://i.gzn.jp/img/2014/06/26/nasa-vacuum-transistor/004_m.jpg

111 :不明なデバイスさん:2015/04/29(水) 08:32:38.55 ID:+w3u/QPd.net
160億年に1秒の誤差。秒を再定義する世界最高精度の光格子時計を東大らが開発
〜高低差1cmの重力の影響も計測可能
http://pc.watch.impress.co.jp/docs/news/20150210_687670.html
東京大学大学院工学系研究科の香取秀俊教授、理化学研究所香取量子計測研究室の高本将男研究員らは10日、
1秒のずれが生じるのに160億年かかる世界最高精度の光格子時計の開発に成功したと発表した。
科学技術振興機構(JST)戦略的創造研究推進事業としての成果。
現在のセシウム原子時計では、この光格子時計の精度を計測できないため、
同チームは光格子時計を2台開発。この2台を比較し、2×10^-18の精度で一致することを確かめた。
これは1秒ずれるのに160億年かかることを意味し、宇宙の年齢の138億年より長い。

112 :不明なデバイスさん:2015/04/29(水) 09:08:23.01 ID:+w3u/QPd.net
原子1個の誤差も無い半導体量子ドットの作製に成功
http://www.ntt.co.jp/news2014/1406/140627a.html
これは局所的な集積度では現在のコンピュータで使用されているLSIの約1000倍に匹敵し、集積化という面でも極限に近いレベルと言えます。

113 :不明なデバイスさん:2015/04/29(水) 09:33:37.03 ID:+w3u/QPd.net
Linuxのペンギン
ttp://i676.photobucket.com/albums/vv122/juliomario40/270601mreat66odd.gif

114 :不明なデバイスさん:2015/04/29(水) 10:15:48.20 ID:+w3u/QPd.net
真空の世界
http://refind2ch.org/search?q=%E7%9C%9F%E7%A9%BA

115 :不明なデバイスさん:2015/04/29(水) 10:20:25.58 ID:+w3u/QPd.net
量子の世界
http://refind2ch.org/search?q=%E9%87%8F%E5%AD%90

116 :不明なデバイスさん:2015/04/30(木) 00:45:04.38 ID:eD0LhM0L.net
原子1個の配線誤差も無い半導体量子ドットの作製に成功
http://www.ntt.co.jp/news2014/1406/140627a.html
これは局所的な集積度では現在のコンピュータで使用されているLSIの約1000倍に匹敵し、集積化という面でも極限に近いレベルと言えます。

シリコン量子コンピュータ ―究極の半導体素子を目指して―
http://www.st.keio.ac.jp/learning/0512.html
研究対象に選んだのが、シリコン原子一個ずつを使った情報処理です。
天然のシリコンはSi-28,Si-29,Si-30という3種類の安定同位体によって構成され、
なかでもSi-29だけが原子核スピンをもつ「磁石」です。
http://www.st.keio.ac.jp/learning/img/p_0512_1a.jpg http://www.st.keio.ac.jp/learning/img/p_0512_2a.jpg http://www.st.keio.ac.jp/learning/img/p_0512_3a.jpg http://www.st.keio.ac.jp/learning/img/p_0512_4a.jpg
伊藤研究室究 - 極のシリコンコンピュータを目指して
http://aurorawave.atspace.tv/?sop:v/769YVHrCc3E&PL0F85A4574DEF4263 http://i1.ytimg.com/vi/769YVHrCc3E/mqdefault.jpg #AuroraWaveTV

117 :不明なデバイスさん:2015/04/30(木) 01:03:44.59 ID:eD0LhM0L.net
半導体はガンマ線など放射線の影響を受けると誤動作するらしいが
真空半導体はどうやって克服できるか面白い次のテーマである・・・

118 :不明なデバイスさん:2015/04/30(木) 02:13:42.64 ID:eD0LhM0L.net
対生成と対消滅 (?波動膜理論?)
http://imgur.com/0qB2RjU.jpg

119 :不明なデバイスさん:2015/04/30(木) 04:09:06.20 ID:eD0LhM0L.net
http://i.gzn.jp/img/2014/06/26/nasa-vacuum-transistor/002_m.jpg
    ∧_∧∩
    ( ゚∀゚)彡 おっぱい!おっぱい!
   ⊂ ⊂彡
    (つ ノ
     (ノ
   __/(___
 /_(____/

120 :不明なデバイスさん:2015/04/30(木) 14:19:14.23 ID:eD0LhM0L.net
素粒子である 自由電子が流れる状態・・・衝突振り子?
http://aurorawave.atspace.tv/?sop:v/3zC1LsTjMY4 http://i1.ytimg.com/vi/3zC1LsTjMY4/mqdefault.jpg #AuroraWaveTV

121 :不明なデバイスさん:2015/04/30(木) 14:26:15.91 ID:eD0LhM0L.net
観測ができるなら素粒子は相対論に収束する理由
宇宙力学⇒相対論⇒相似論⇒確定要素⇒正しい理論

観測ができない素粒子の取り扱いが間違っている理由
量子力学⇒量子論⇒確率論⇒不確定要素⇒間違い理論

観測ができる物質と観測ができない素粒子では?
相対論+量子論⇒一部の不確定要素が含まれる⇒間違い理論

122 :不明なデバイスさん:2015/05/01(金) 22:01:53.99 ID:BrFJOPiN.net
テラヘルツ電磁波の発生・検出とその応用
http://fir.u-fukui.ac.jp/thzlab/THz_note.pdf

123 :不明なデバイスさん:2015/05/01(金) 22:48:55.03 ID:BrFJOPiN.net
https://www.google.co.jp/search?q=%E3%83%86%E3%83%A9%E3%83%98%E3%83%AB%E3%83%84&num=100&source=lnms&tbm=isch&sa=X
http://www.nict.go.jp/publication/NICT-News/0906/images/02_figure02.jpg

124 :不明なデバイスさん:2015/05/01(金) 23:01:46.44 ID:BrFJOPiN.net
量子演算に必須な安定動作する量子エラー検出回路を開発
IBM、量子コンピューター実用化に向け重要な進歩
http://ascii.jp/elem/000/001/005/1005259/
http://ascii.jp/elem/000/001/005/1005254/IBMQ01_588x.jpg
http://ascii.jp/elem/000/001/005/1005255/IBMQ02_800x.jpg
http://ascii.jp/elem/000/001/005/1005256/IBMQ03_800x.jpg

125 :不明なデバイスさん:2015/05/01(金) 23:13:33.09 ID:7FUyMIM2.net
IBMは4月29日、同社研究所が量子コンピューターの実用化に向けた
2つの重要な進歩を遂げたと発表した

今回新たに開発されたのは、2種類の量子エラーを同時に
検出して計測する機能と、大規模化が可能な
新正方格子量子ビット回路の開発

新たに開発した量子ビット回路は1/4インチ四方のチップにある
超電導量子ビットの正方回路
1量子ビット(キュービット)は0か1かの状態だけなく
その重ねあわせの状態を取る

一般的なコンピューターと同様に、ビットが保持されることは
量子コンピューターにおいても重要だが、
量子ビットの状態はビットフリップと位相フリップと呼ばれる
2種類のエラーが生じる
これまでどちらかの位相フリップエラーを検出する方式はあったものの
同時に2種類のエラーを検出することは難しかった
(量子ビットを観測することで情報を破壊してしまうため)

IBMリサーチの研究グループでは、1つの正方チップ上に
4つの量子ビットを保持させ、2種類の量子エラーを
同時に検出できるようにしている
このチップは既存のシリコン半導体プロセスで設計・製造できるため、
大規模量子コンピューター設計の基本として利用可能という

http://ascii.jp/elem/000/001/005/1005259/

126 :不明なデバイスさん:2015/05/04(月) 07:00:43.77 ID:WMdefsKs.net
■マーチ教授のコメント
「多くの粒子から成り立っているこの現実世界で
なぜ時間が正方向にしか流れずエントロピーが常に増大する
のかはよく分かっていません
しかし、たくさんの人がこの問題に取り組んでおり
あと数年で解決できると期待しています」

127 :不明なデバイスさん:2015/05/04(月) 16:04:04.13 ID:qn6Dzfje.net
>>126
実時間は常に経過するしかない・・・時間は論理的で物理現象では無い

過去・・・記録の再生 (空間記録である星は常に過去が見える)

未来・・・シミュレーション予測 (周期シミュレーション予測)

128 :不明なデバイスさん:2015/05/04(月) 16:05:52.99 ID:qn6Dzfje.net
宇宙力学を相似的に小さく扱えば素粒子の動き同様と予想される
http://aurorawave.atspace.tv/?sop:v/0jHsq36_NTU&RD0jHsq36_NTU http://i.ytimg.com/vi/0jHsq36_NTU/mqdefault.jpg #AuroraWaveTV

極小の世界でも相似的にアインシュタインの相対論に収束する
http://aurorawave.atspace.tv/?sop:v/mZolW0H1CPI&RDmZolW0H1CPI http://i1.ytimg.com/vi/mZolW0H1CPI/mqdefault.jpg #AuroraWaveTV

観測ができるなら素粒子は相対論に収束する理由
宇宙力学⇒相対論⇒相似論⇒確定要素⇒正しい理論

観測ができない素粒子の取り扱いが間違っている理由
量子力学⇒量子論⇒確率論⇒不確定要素⇒間違い理論

観測ができる物質と観測ができない素粒子では?
相対論+量子論⇒一部の不確定要素が含まれる⇒間違い理論

129 :不明なデバイスさん:2015/05/04(月) 16:54:04.81 ID:qn6Dzfje.net
実は全てが波なのだ・・・長波とX線を比べてみよ・・・長波は広がるがX線は絞られる

300000000m/s 光速 http://ja.wikipedia.org/wiki/%E5%85%89%E9%80%9F

例えば1秒の誤差で光速観測すると確率的にしか解釈できなくなる

ところが1/300000000秒の誤差で光速観測すると光を止めて観測できる様になる

そこで、さて、実験装置が必要である

やはりアインシュタインが正しそうである

130 :不明なデバイスさん:2015/05/07(木) 02:11:19.02 ID:ysF5jNem.net
超高性能の同期パルス源が見つかった・・・これは超精密測定のための突破口だ!

160億年に1秒の誤差。秒を再定義する世界最高精度の光格子時計を東大らが開発
〜高低差1cmの重力の影響も計測可能
http://pc.watch.impress.co.jp/docs/news/20150210_687670.html
東京大学大学院工学系研究科の香取秀俊教授、理化学研究所香取量子計測研究室の高本将男研究員らは10日、
1秒のずれが生じるのに160億年かかる世界最高精度の光格子時計の開発に成功したと発表した。
科学技術振興機構(JST)戦略的創造研究推進事業としての成果。
現在のセシウム原子時計では、この光格子時計の精度を計測できないため、
同チームは光格子時計を2台開発。この2台を比較し、2×10^-18の精度で一致することを確かめた。
これは1秒ずれるのに160億年かかることを意味し、宇宙の年齢の138億年より長い。

131 :不明なデバイスさん:2015/05/07(木) 02:37:09.39 ID:ysF5jNem.net
量子論に膜理論があるが素粒子のサイズは0にならない
つまり相対論でも無限大は無く相対論の数式は破綻しない
http://aurorawave.atspace.tv/?sop:v/7y_BlA3ZTeQ&RD7y_BlA3ZTeQ http://www.youtube.com/watch?&v=7y_BlA3ZTeQ&list=RD7y_BlA3ZTeQ&hd=1 http://i1.ytimg.com/vi/7y_BlA3ZTeQ/mqdefault.jpg

132 :不明なデバイスさん:2015/05/13(水) 22:57:54.87 ID:MNnhp/I1.net
重元素合成の鍵を握る中性子過剰核110個の寿命測定に成功 | 理化学研究所
http://www.riken.jp/pr/press/2015/20150512_1/

133 :不明なデバイスさん:2015/05/21(木) 02:50:35.14 ID:RHXbg1IW.net
         ∧_∧
        (´・ω・`)
        (m9  つ
        /    )
       ..( / ̄∪

134 :不明なデバイスさん:2015/06/04(木) 12:04:36.54 ID:mxN7D4B/.net
http://news.mynavi.jp/news/2015/05/26/542/images/011l.jpg

135 :不明なデバイスさん:2015/06/04(木) 19:11:26.34 ID:mxN7D4B/.net
量子テレポーテーション 別経路通信が手品のタネ明かしです
http://misatopology.com/2012/10/14/quantum_transportation/
実際のところ、通信自体が超光速になるわけではありません。
量子テレポーテーションでは、送られた情報の解読のために、
別経路の従来の(光などの)通信による「鍵」が必要になるからです。

136 :不明なデバイスさん:2015/06/04(木) 22:21:59.38 ID:TrHObyme.net
世界一苦いものは「デナトニウム陽イオン」
1億分の1にしても苦味を感じるそうです

137 :不明なデバイスさん:2015/06/24(水) 03:18:27.35 ID:PE30rxYE.net
カリフォルニア大学バークレー校博士課程の渡辺悠樹大学院生と
東京大学の押川正毅教授は、マサチューセッツ工科大学の
フランク・ウィルチェック教授が2012年に理論的に提案した
「時間結晶(time crystal)」という物質の新しい状態について
実現が不可能であることを数学的に証明した

結晶は、一定の条件のもとで、原子の集まりが自発的に
空間的なパターンを作り規則正しく並んでいる状態であるが
相対性理論によれば時間と空間は完全に別のものではないため
原子の集まりが時間方向に自発的にパターンを作る可能性も考えられる

今回の研究では、統計力学により導かれる安定な物質の状態
(平衡状態)で巨視的な物理量の時間相関関数を評価し
厳密な不等式を用いてこれが時間的に振動する
ことはないことを数学的に証明した
これは、統計力学に従う限り
「時間結晶」は実際には存在しないことを意味している

(東京大学の発表資料より)
http://www.zaikei.co.jp/files/general/2015062319012170big.jpg

138 :不明なデバイスさん:2015/07/09(木) 21:00:28.51 ID:TkxNLusD.net
■体積が1/1000となる超小型のカーボンナノチューブ(CNT)集積化マイクロキャパシターを開発

キャパシター電極材料として有望な、スーパーグロース法で作製した
高純度で比表面積の大きい単層CNTを用いて、リソグラフィーによる
CNT膜電極微細加工技術と電極隔離技術を開発し
超小型で集積化されたキャパシターを開発した

今回開発したCNT集積化マイクロキャパシターは、
アルミ電解コンデンサーの代替、電子機器の軽薄小型化
超小型電子機器の電源への応用が期待される

なお、この研究の詳細は、
ドイツの学術誌Advanced Energy Materialsに近く掲載される

139 :不明なデバイスさん:2015/08/05(水) 18:25:28.71 ID:XS5ume3C.net
東芝は4日、記憶容量を256ギガビットへと超大容量化した
48層のメモリー半導体「3次元フラッシュメモリー」を
世界で初めて開発した、と発表した
9月からサンプル出荷を始め、来年から量産出荷する

現行製品よりも書き込み速度や書き換え寿命が向上
メモリーカード、スマートフォンなどの小型機器から
データセンター用サーバーのシリコンディスクまで
幅広い用途に供給する

三重県の四日市工場第5製造棟で製造を初め、
2016年前半に完成予定の新第2製造棟でも製造する予定

メモリー素子を垂直に積載する3次元メモリーは
従来の製造方法よりも記憶容量が大幅に増え、
次世代の半導体とされる
情報端末向けに開発競争は激しくなっており
需要も伸びる見通しだ

140 :不明なデバイスさん:2015/09/22(火) 18:18:27.01 ID:Kbrq94hB.net
NEW - p点とp'点では異なる位相で観測される
http://faustus.xii.jp/uploda/src/file745.htm

141 :不明なデバイスさん:2015/09/23(水) 00:54:42.91 ID:LQFBt24P.net
NEW - 日立製作所、D-Waveの量子コンピュータに対抗する新型コンピュータを試作
http://itpro.nikkeibp.co.jp/atcl/column/14/346926/022000173/
http://itpro.nikkeibp.co.jp/atcl/column/14/346926/022000173/1.jpg
http://itpro.nikkeibp.co.jp/atcl/column/14/346926/022000173/3.jpg
http://itpro.nikkeibp.co.jp/atcl/column/14/346926/022000173/4.jpg

142 :不明なデバイスさん:2015/10/12(月) 17:27:29.53 ID:N0vYl20/.net
,日経プラス10 スパコンよりも速い!量子コンピューターの可能性 20151001
http://aurorawave.atspace.tv/?sop:v/qcA9Sr_6AyM&RDqcA9Sr_6AyM http://i1.ytimg.com/vi/qcA9Sr_6AyM/mqdefault.jpg #AuroraWaveTV

143 :不明なデバイスさん:2015/11/30(月) 01:37:44.41 ID:t2vIVZ3p.net
特異点
https://www.youtube.com/watch?v=Dv3ZblXhAdk

144 :不明なデバイスさん:2016/01/03(日) 23:52:22.77 ID:J/BIIHsJ.net
2014年夏、ある新しい半導体が日本で誕生した
純国産プロセッサとして独自開発された同半導体は、
画期的仕様と性能に加え、特筆すべき省電力性を備えている

その大規模プロセッサを京速計算機「京」と同じ8万8128個使用した場合、
理論上は「京」の128倍に上る性能を持つスーパーコンピュータが実現される
この性能は1.28エクサフロップスと言い表され、人類が
初めて「エクサ」という数値単位の演算性能に到達することになる

その数値単位の性能によるコンピュータ処理は
「エクサスケール・コンピューティング」と呼ばれ、新たに
「前特異点」とも定義すべき大きな変革をもたらす可能性を秘めている

「エネルギーがフリーになる」
「働く必要のない社会が出現する」
「人類が不老を得る」……

世界コンピュータ・ランキング消費電力性能部門「Green500」で、
独自技術により世界第2位を獲得した研究開発者が描きだす鮮烈な未来

145 :一方通行 ◆.RAMsEHKDA :2017/02/21(火) 05:30:05.11 ID:fHikpRxI.net
中性子ゲート量子コンピュータの概念図はまるで、首都高の箱崎ジャンクションみたいだ。
あちこちにファスナー合流地点があるようなものであり、余計に渋滞の原因を作っているようなものだ。

帰省ラッシュや観光ラッシュでは多数の車で詰まってほぼグリッドロックの超渋滞状態になる。

16車線はあるが、片側8車線の構成(左側通行であるため、それぞれの一方通行)。
普通乗用車で走ると、壁の中を走っているようなものだぞ。

146 :不明なデバイスさん:2017/03/19(日) 00:59:54.76 ID:60VdJrzI.net
D-Wave のアナログ量子コンピューターは "速くなかった"  
http://www7b.biglobe.ne.jp/~kcy05t/nidwave.html
http://www7b.biglobe.ne.jp/~kcy05t/rzu/dwa/zsta2.gif
http://www7b.biglobe.ne.jp/~kcy05t/rzu/dwa/zsta1.gif
http://www7b.biglobe.ne.jp/~kcy05t/rzu/dwa/zjdb5.gif

147 :不明なデバイスさん:2017/03/19(日) 01:04:31.31 ID:60VdJrzI.net
日立製作所、D-Waveの量子コンピュータに対抗する新型コンピュータを試作
http://itpro.nikkeibp.co.jp/atcl/column/14/346926/022000173/
http://itpro.nikkeibp.co.jp/atcl/column/14/346926/022000173/1.jpg
http://itpro.nikkeibp.co.jp/atcl/column/14/346926/022000173/3.jpg
http://itpro.nikkeibp.co.jp/atcl/column/14/346926/022000173/4.jpg

148 :リンク+ :2017/11/20(月) 16:30:44.02 ID:5ZYw4551.net
量子コンピュータが普及し、価格をNintendo Switch並みに安くすれば、
誰もがスパコンを持つ時代になるでしょう。

149 :不明なデバイスさん:2018/01/01(月) 19:30:10.46 ID:zbLcFcaT.net
興味がある人だけどうぞ。ネット小遣い稼ぎ方法など。

グーグル検索⇒『工藤のジョウノウノウ』

V5M2L5CYCM

150 :不明なデバイスさん:2018/07/05(木) 10:43:43.96 ID:to6k2B8a.net
友達から教えてもらった自宅で稼げる方法
興味がある人はどうぞ
検索してみよう『ネットで稼ぐ方法 モニアレフヌノ』

9BP

151 :不明なデバイスさん:2018/07/05(木) 10:48:17.26 ID:XY0Cc8Mb.net
皆がこれで遊ぶ時代になるでしょう https://goo.gl/Nr43D1

152 :不明なデバイスさん:2018/12/22(土) 15:01:15.64 ID:JKgXIw0e.net
ブラウン管の電子ビーム、実は(アナログスイッチ)量子コンピュータだった
https://i.imgur.com/aHLCZdR.jpg

153 :不明なデバイスさん:2019/06/18(火) 06:32:42.62 ID:6C+MP3LF.net
プログラム板に古澤明の生徒降臨中!botに一晩も反応する異常さ
一般人(古澤研究室)に殺害予告をしているのでスレ建て通報してください。
https://mevius.5ch.net/test/read.cgi/tech/1559872586/

142 名前:a4 ◆700L1Efzuv 投稿日:2019/06/18(火) 05:29:55 ID://qVkzO
>>141
名古屋の人な 俺ね、君の問題を大橋先生と混ぜないことにする。つまりね、
片桐孝洋のことをボコろうと思う。普通に顎の骨を折る。これくらいで警察来るか?
一般市民とかさ、普通にさ、俺らの秘密なんだけどさ、日本人なんて復活ねーから。


154 :不明なデバイスさん:2019/06/18(火) 21:29:34.62 ID:6C+MP3LF.net
【開発費】松本卓朗 量子コンピュータ【詐欺師】
https://rio2016.5ch.net/test/read.cgi/sci/1560859418/


67 KB
新着レスの表示

掲示板に戻る 全部 前100 次100 最新50
名前: E-mail (省略可) :

read.cgi ver 2014.07.20.01.SC 2014/07/20 D ★